Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application's immediate response in an unsafe way. An attacker can use the vulnerability to construct a request which, if issued by another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the context of that user's session with the application.
The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.
Users can be induced to issue the attacker's crafted request in various ways. For example, the attacker can send a victim a link containing a malicious URL in an email or instant message. They can submit the link to popular web sites that allow content authoring, for example in blog comments. And they can create an innocuous looking web site which causes anyone viewing it to make arbitrary cross-domain requests to the vulnerable application (using either the GET or the POST method).
The security impact of cross-site scripting vulnerabilities is dependent upon the nature of the vulnerable application, the kinds of data and functionality which it contains, and the other applications which belong to the same domain and organisation. If the application is used only to display non-sensitive public content, with no authentication or access control functionality, then a cross-site scripting flaw may be considered low risk. However, if the same application resides on a domain which can access cookies for other more security-critical applications, then the vulnerability could be used to attack those other applications, and so may be considered high risk. Similarly, if the organisation which owns the application is a likely target for phishing attacks, then the vulnerability could be leveraged to lend credibility to such attacks, by injecting Trojan functionality into the vulnerable application, and exploiting users' trust in the organisation in order to capture credentials for other applications which it owns. In many kinds of application, such as those providing online banking functionality, cross-site scripting should always be considered high risk.
Issue remediation
In most situations where user-controllable data is copied into application responses, cross-site scripting attacks can be prevented using two layers of defences:
Input should be validated as strictly as possible on arrival, given the kind of content which it is expected to contain. For example, personal names should consist of alphabetical and a small range of typographical characters, and be relatively short; a year of birth should consist of exactly four numerals; email addresses should match a well-defined regular expression. Input which fails the validation should be rejected, not sanitised.
User input should be HTML-encoded at any point where it is copied into application responses. All HTML metacharacters, including < > " ' and =, should be replaced with the corresponding HTML entities (< > etc).
In cases where the application's functionality allows users to author content using a restricted subset of HTML tags and attributes (for example, blog comments which allow limited formatting and linking), it is necessary to parse the supplied HTML to validate that it does not use any dangerous syntax; this is a non-trivial task.
The value of REST URL parameter 1 is copied into the value of an HTML tag attribute which is encapsulated in double quotation marks. The payload b8008"><script>alert(1)</script>e10a3c45615 was submitted in the REST URL parameter 1. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
Request
GET /ad_viewb8008"><script>alert(1)</script>e10a3c45615?id=418 HTTP/1.1 Host: marinas.com Proxy-Connection: keep-alive Referer: http://marinas.com/view/marina/3705_Hinckley_Yacht_Services_Portsmouth_RI User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16 Accept: */* Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 Cookie: PHPSESSID=fmk2t5746q03rgqo9h1bislnm7; __qca=P0-101309185-1302093197159
Response
HTTP/1.1 404 Not Found Date: Wed, 06 Apr 2011 12:34:00 GMT Server: Apache/2.2.3 (CentOS) X-Powered-By: PHP/5.3.2 Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Connection: close Content-Type: text/html; charset=UTF-8 Content-Length: 23763
The value of REST URL parameter 1 is copied into the value of an HTML tag attribute which is encapsulated in double quotation marks. The payload d8168"><script>alert(1)</script>ccabf3e999e was submitted in the REST URL parameter 1. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
Request
GET /viewd8168"><script>alert(1)</script>ccabf3e999e/marina/3705_Hinckley_Yacht_Services_Portsmouth_RI HTTP/1.1 Host: marinas.com Proxy-Connection: keep-alive User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
The name of an arbitrarily supplied request parameter is copied into the value of an HTML tag attribute which is encapsulated in double quotation marks. The payload 9a1b1"><script>alert(1)</script>07aa909051 was submitted in the name of an arbitrarily supplied request parameter. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
Request
GET /view/marina/3705_Hinckley_Yacht_Services_Portsmouth_RI?9a1b1"><script>alert(1)</script>07aa909051=1 HTTP/1.1 Host: marinas.com Proxy-Connection: keep-alive User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
The following cookie was issued by the application and does not have the HttpOnly flag set:
PHPSESSID=4g9aokvasgdhv59askls4kcsp0; path=/
The cookie appears to contain a session token, which may increase the risk associated with this issue. You should review the contents of the cookie to determine its function.
Issue background
If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or set by client-side JavaScript. This measure can prevent certain client-side attacks, such as cross-site scripting, from trivially capturing the cookie's value via an injected script.
Issue remediation
There is usually no good reason not to set the HttpOnly flag on all cookies. Unless you specifically require legitimate client-side scripts within your application to read or set a cookie's value, you should set the HttpOnly flag by including this attribute within the relevant Set-cookie directive.
You should be aware that the restrictions imposed by the HttpOnly flag can potentially be circumvented in some circumstances, and that numerous other serious attacks can be delivered by client-side script injection, aside from simple cookie stealing.
Request
GET /view/marina/3705_Hinckley_Yacht_Services_Portsmouth_RI HTTP/1.1 Host: marinas.com Proxy-Connection: keep-alive User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
The application publishes a Flash cross-domain policy which allows access from specific other domains, and allows access from specific subdomains.
Allowing access from specific domains means that web sites on those domains can perform two-way interaction with this application. You should only use this policy if you fully trust the specific domains allowed by the policy.
Issue background
The Flash cross-domain policy controls whether Flash client components running on other domains can perform two-way interaction with the domain which publishes the policy. If another domain is allowed by the policy, then that domain can potentially attack users of the application. If a user is logged in to the application, and visits a domain allowed by the policy, then any malicious content running on that domain can potentially gain full access to the application within the security context of the logged in user.
Even if an allowed domain is not overtly malicious in itself, security vulnerabilities within that domain could potentially be leveraged by a third-party attacker to exploit the trust relationship and attack the application which allows access.
Issue remediation
You should review the domains which are allowed by the Flash cross-domain policy and determine whether it is appropriate for the application to fully trust both the intentions and security posture of those domains.
Request
GET /crossdomain.xml HTTP/1.0 Host: marinas.com
Response
HTTP/1.1 200 OK Date: Wed, 06 Apr 2011 12:33:14 GMT Server: Apache/2.2.3 (CentOS) Last-Modified: Wed, 10 Mar 2010 21:08:26 GMT ETag: "d4b10f9-254-48178b2ffa680" Accept-Ranges: bytes Content-Length: 596 Connection: close Content-Type: text/xml
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd"> <cross-domain-policy> <allow-access-from domain="www.marinas.com" />
When an application includes a script from an external domain, this script is executed by the browser within the security context of the invoking application. The script can therefore do anything that the application's own scripts can do, such as accessing application data and performing actions within the context of the current user.
If you include a script from an external domain, then you are trusting that domain with the data and functionality of your application, and you are trusting the domain's own security to prevent an attacker from modifying the script to perform malicious actions within your application.
Issue remediation
Scripts should not be included from untrusted domains. If you have a requirement which a third-party script appears to fulfil, then you should ideally copy the contents of that script onto your own domain and include it from there. If that is not possible (e.g. for licensing reasons) then you should consider reimplementing the script's functionality within your own code.
Request
GET /view/marina/3705_Hinckley_Yacht_Services_Portsmouth_RI HTTP/1.1 Host: marinas.com Proxy-Connection: keep-alive User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5 Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
The TRACE method is designed for diagnostic purposes. If enabled, the web server will respond to requests which use the TRACE method by echoing in its response the exact request which was received.
Although this behaviour is apparently harmless in itself, it can sometimes be leveraged to support attacks against other application users. If an attacker can find a way of causing a user to make a TRACE request, and can retrieve the response to that request, then the attacker will be able to capture any sensitive data which is included in the request by the user's browser, for example session cookies or credentials for platform-level authentication. This may exacerbate the impact of other vulnerabilities, such as cross-site scripting.
Issue remediation
The TRACE method should be disabled on the web server.
The following email address was disclosed in the response:
diego@fyneworks.com
Issue background
The presence of email addresses within application responses does not necessarily constitute a security vulnerability. Email addresses may appear intentionally within contact information, and many applications (such as web mail) include arbitrary third-party email addresses within their core content.
However, email addresses of developers and other individuals (whether appearing on-screen or hidden within page source) may disclose information that is useful to an attacker; for example, they may represent usernames that can be used at the application's login, and they may be used in social engineering attacks against the organisation's personnel. Unnecessary or excessive disclosure of email addresses may also lead to an increase in the volume of spam email received.
Issue remediation
You should review the email addresses being disclosed by the application, and consider removing any that are unnecessary, or replacing personal addresses with anonymous mailbox addresses (such as helpdesk@example.com).
Request
GET /scripts/stars/jquery.rating.pack.js HTTP/1.1 Host: marinas.com Proxy-Connection: keep-alive Referer: http://marinas.com/view/marina/3705_Hinckley_Yacht_Services_Portsmouth_RI User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16 Accept: */* Accept-Encoding: gzip,deflate,sdch Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 Cookie: PHPSESSID=fmk2t5746q03rgqo9h1bislnm7
Response
HTTP/1.1 200 OK Date: Wed, 06 Apr 2011 12:33:15 GMT Server: Apache/2.2.3 (CentOS) Last-Modified: Wed, 10 Mar 2010 21:06:34 GMT ETag: "de28009-bbc-48178ac52aa80" Accept-Ranges: bytes Content-Length: 3004 Connection: close Content-Type: application/x-javascript
/* ### jQuery Star Rating Plugin v2.5 - 2008-09-10 ### * http://www.fyneworks.com/ - diego@fyneworks.com * Dual licensed under the MIT and GPL licenses: * http://www.opensource.org/licenses/mit-license.php * http://www.gnu.org/licenses/gpl.html ### Project: http://plugins.jquery.com/project ...[SNIP]...
The file robots.txt is used to give instructions to web robots, such as search engine crawlers, about locations within the web site which robots are allowed, or not allowed, to crawl and index.
The presence of the robots.txt does not in itself present any kind of security vulnerability. However, it is often used to identify restricted or private areas of a site's contents. The information in the file may therefore help an attacker to map out the site's contents, especially if some of the locations identified are not linked from elsewhere in the site. If the application relies on robots.txt to protect access to these areas, and does not enforce proper access control over them, then this presents a serious vulnerability.
Issue remediation
The robots.txt file is not itself a security threat, and its correct use can represent good practice for non-security reasons. You should not assume that all web robots will honour the file's instructions. Rather, assume that attackers will pay close attention to any locations identified in the file. Do not rely on robots.txt to provide any kind of protection over unauthorised access.
If a web response specifies an incorrect content type, then browsers may process the response in unexpected ways. If the specified content type is a renderable text-based format, then the browser will usually attempt to parse and render the response in that format. If the specified type is an image format, then the browser will usually detect the anomaly and will analyse the actual content and attempt to determine its MIME type. Either case can lead to unexpected results, and if the content contains any user-controllable data may lead to cross-site scripting or other client-side vulnerabilities.
In most cases, the presence of an incorrect content type statement does not constitute a security flaw, particularly if the response contains static content. You should review the contents of the response and the context in which it appears to determine whether any vulnerability exists.
Issue remediation
For every response containing a message body, the application should include a single Content-type header which correctly and unambiguously states the MIME type of the content in the response body.
// Problem: GMarkerManager shows markers that have been removed. // Solution: Hide markers by moving them off the map, and unhide them by moving them back on the map. // Solution was found here: // ...[SNIP]...
Report generated by XSS.CX at Wed Apr 06 07:35:06 CDT 2011.