The value of the step request parameter is copied into an HTML comment. The payload 1d4fd--><script>alert(1)</script>7ad6396c187 was submitted in the step parameter. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
Remediation detail
Echoing user-controllable data within HTML comment tags does not prevent XSS attacks if the user is able to close the comment or use other techniques to introduce scripts within the comment context.
Issue background
Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application's immediate response in an unsafe way. An attacker can use the vulnerability to construct a request which, if issued by another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the context of that user's session with the application.
The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.
Users can be induced to issue the attacker's crafted request in various ways. For example, the attacker can send a victim a link containing a malicious URL in an email or instant message. They can submit the link to popular web sites that allow content authoring, for example in blog comments. And they can create an innocuous looking web site which causes anyone viewing it to make arbitrary cross-domain requests to the vulnerable application (using either the GET or the POST method).
The security impact of cross-site scripting vulnerabilities is dependent upon the nature of the vulnerable application, the kinds of data and functionality which it contains, and the other applications which belong to the same domain and organisation. If the application is used only to display non-sensitive public content, with no authentication or access control functionality, then a cross-site scripting flaw may be considered low risk. However, if the same application resides on a domain which can access cookies for other more security-critical applications, then the vulnerability could be used to attack those other applications, and so may be considered high risk. Similarly, if the organisation which owns the application is a likely target for phishing attacks, then the vulnerability could be leveraged to lend credibility to such attacks, by injecting Trojan functionality into the vulnerable application, and exploiting users' trust in the organisation in order to capture credentials for other applications which it owns. In many kinds of application, such as those providing online banking functionality, cross-site scripting should always be considered high risk.
Remediation background
In most situations where user-controllable data is copied into application responses, cross-site scripting attacks can be prevented using two layers of defences:
Input should be validated as strictly as possible on arrival, given the kind of content which it is expected to contain. For example, personal names should consist of alphabetical and a small range of typographical characters, and be relatively short; a year of birth should consist of exactly four numerals; email addresses should match a well-defined regular expression. Input which fails the validation should be rejected, not sanitised.
User input should be HTML-encoded at any point where it is copied into application responses. All HTML metacharacters, including < > " ' and =, should be replaced with the corresponding HTML entities (< > etc).
In cases where the application's functionality allows users to author content using a restricted subset of HTML tags and attributes (for example, blog comments which allow limited formatting and linking), it is necessary to parse the supplied HTML to validate that it does not use any dangerous syntax; this is a non-trivial task.
The application publishes a Flash cross-domain policy which uses a wildcard to specify allowed domains, and allows access from specific other domains.
Using a wildcard to specify allowed domains means that any domain matching the wildcard expression can perform two-way interaction with this application. You should only use this policy if you fully trust every possible web site that may reside on a domain which matches the wildcard expression.
Allowing access from specific domains means that web sites on those domains can perform two-way interaction with this application. You should only use this policy if you fully trust the specific domains allowed by the policy.
Issue background
The Flash cross-domain policy controls whether Flash client components running on other domains can perform two-way interaction with the domain which publishes the policy. If another domain is allowed by the policy, then that domain can potentially attack users of the application. If a user is logged in to the application, and visits a domain allowed by the policy, then any malicious content running on that domain can potentially gain full access to the application within the security context of the logged in user.
Even if an allowed domain is not overtly malicious in itself, security vulnerabilities within that domain could potentially be leveraged by a third-party attacker to exploit the trust relationship and attack the application which allows access.
Issue remediation
You should review the domains which are allowed by the Flash cross-domain policy and determine whether it is appropriate for the application to fully trust both the intentions and security posture of those domains.
Request
GET /crossdomain.xml HTTP/1.0 Host: www.emusic.com
3. Password field with autocomplete enabledpreviousnext
Summary
Severity:
Low
Confidence:
Certain
Host:
https://www.emusic.com
Path:
/promo/registration/1.html
Issue detail
The page contains a form with the following action URL:
https://www.emusic.com/promo/registration/1.html
The form contains the following password fields with autocomplete enabled:
password
passwordConfirm
Issue background
Most browsers have a facility to remember user credentials that are entered into HTML forms. This function can be configured by the user and also by applications which employ user credentials. If the function is enabled, then credentials entered by the user are stored on their local computer and retrieved by the browser on future visits to the same application.
The stored credentials can be captured by an attacker who gains access to the computer, either locally or through some remote compromise. Further, methods have existed whereby a malicious web site can retrieve the stored credentials for other applications, by exploiting browser vulnerabilities or through application-level cross-domain attacks.
Issue remediation
To prevent browsers from storing credentials entered into HTML forms, you should include the attribute autocomplete="off" within the FORM tag (to protect all form fields) or within the relevant INPUT tags (to protect specific individual fields).
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:og="http://opengraphprotocol.org/schema/" xmlns:fb="http:// ...[SNIP]... </h1>
If the secure flag is set on a cookie, then browsers will not submit the cookie in any requests that use an unencrypted HTTP connection, thereby preventing the cookie from being trivially intercepted by an attacker monitoring network traffic. If the secure flag is not set, then the cookie will be transmitted in clear-text if the user visits any HTTP URLs within the cookie's scope. An attacker may be able to induce this event by feeding a user suitable links, either directly or via another web site. Even if the domain which issued the cookie does not host any content that is accessed over HTTP, an attacker may be able to use links of the form http://example.com:443/ to perform the same attack.
Issue remediation
The secure flag should be set on all cookies that are used for transmitting sensitive data when accessing content over HTTPS. If cookies are used to transmit session tokens, then areas of the application that are accessed over HTTPS should employ their own session handling mechanism, and the session tokens used should never be transmitted over unencrypted communications.
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:og="http://opengraphprotocol.org/schema/" xmlns:fb="http:// ...[SNIP]...
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
A cookie's domain attribute determines which domains can access the cookie. Browsers will automatically submit the cookie in requests to in-scope domains, and those domains will also be able to access the cookie via JavaScript. If a cookie is scoped to a parent domain, then that cookie will be accessible by the parent domain and also by any other subdomains of the parent domain. If the cookie contains sensitive data (such as a session token) then this data may be accessible by less trusted or less secure applications residing at those domains, leading to a security compromise.
Issue remediation
By default, cookies are scoped to the issuing domain and all subdomains. If you remove the explicit domain attribute from your Set-cookie directive, then the cookie will have this default scope, which is safe and appropriate in most situations. If you particularly need a cookie to be accessible by a parent domain, then you should thoroughly review the security of the applications residing on that domain and its subdomains, and confirm that you are willing to trust the people and systems which support those applications.
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:og="http://opengraphprotocol.org/schema/" xmlns:fb="http:// ...[SNIP]...
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
When an application includes a script from an external domain, this script is executed by the browser within the security context of the invoking application. The script can therefore do anything that the application's own scripts can do, such as accessing application data and performing actions within the context of the current user.
If you include a script from an external domain, then you are trusting that domain with the data and functionality of your application, and you are trusting the domain's own security to prevent an attacker from modifying the script to perform malicious actions within your application.
Issue remediation
Scripts should not be included from untrusted domains. If you have a requirement which a third-party script appears to fulfil, then you should ideally copy the contents of that script onto your own domain and include it from there. If that is not possible (e.g. for licensing reasons) then you should consider reimplementing the script's functionality within your own code.
If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or set by client-side JavaScript. This measure can prevent certain client-side attacks, such as cross-site scripting, from trivially capturing the cookie's value via an injected script.
Issue remediation
There is usually no good reason not to set the HttpOnly flag on all cookies. Unless you specifically require legitimate client-side scripts within your application to read or set a cookie's value, you should set the HttpOnly flag by including this attribute within the relevant Set-cookie directive.
You should be aware that the restrictions imposed by the HttpOnly flag can potentially be circumvented in some circumstances, and that numerous other serious attacks can be delivered by client-side script injection, aside from simple cookie stealing.
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:og="http://opengraphprotocol.org/schema/" xmlns:fb="http:// ...[SNIP]...
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
The presence of email addresses within application responses does not necessarily constitute a security vulnerability. Email addresses may appear intentionally within contact information, and many applications (such as web mail) include arbitrary third-party email addresses within their core content.
However, email addresses of developers and other individuals (whether appearing on-screen or hidden within page source) may disclose information that is useful to an attacker; for example, they may represent usernames that can be used at the application's login, and they may be used in social engineering attacks against the organisation's personnel. Unnecessary or excessive disclosure of email addresses may also lead to an increase in the volume of spam email received.
Issue remediation
You should review the email addresses being disclosed by the application, and consider removing any that are unnecessary, or replacing personal addresses with anonymous mailbox addresses (such as helpdesk@example.com).
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:og="http://opengraphprotocol.org/schema/" xmlns:fb="http:// ...[SNIP]... <a href="mailto:questions@emusic.com">questions@emusic.com</a> ...[SNIP]...
The file robots.txt is used to give instructions to web robots, such as search engine crawlers, about locations within the web site which robots are allowed, or not allowed, to crawl and index.
The presence of the robots.txt does not in itself present any kind of security vulnerability. However, it is often used to identify restricted or private areas of a site's contents. The information in the file may therefore help an attacker to map out the site's contents, especially if some of the locations identified are not linked from elsewhere in the site. If the application relies on robots.txt to protect access to these areas, and does not enforce proper access control over them, then this presents a serious vulnerability.
Issue remediation
The robots.txt file is not itself a security threat, and its correct use can represent good practice for non-security reasons. You should not assume that all web robots will honour the file's instructions. Rather, assume that attackers will pay close attention to any locations identified in the file. Do not rely on robots.txt to provide any kind of protection over unauthorised access.
#-------------------------------------------------------------------- # Copyright eMusic.COM, Inc. 2004 # All Rights Reserved. Licensed Software. # # THIS IS UNPUBLISHED PROPRIETARY SOURCE CO ...[SNIP]...
The server presented a valid, trusted SSL certificate. This issue is purely informational.
The server presented the following certificates:
Server certificate
Issued to:
www.emusic.com,ST=New York
Issued by:
Akamai Subordinate CA 3
Valid from:
Mon Jun 13 07:48:05 GMT-06:00 2011
Valid to:
Wed Jun 13 07:48:05 GMT-06:00 2012
Certificate chain #1
Issued to:
Akamai Subordinate CA 3
Issued by:
GTE CyberTrust Global Root
Valid from:
Thu May 11 09:32:00 GMT-06:00 2006
Valid to:
Sat May 11 17:59:00 GMT-06:00 2013
Certificate chain #2
Issued to:
GTE CyberTrust Global Root
Issued by:
GTE CyberTrust Global Root
Valid from:
Wed Aug 12 18:29:00 GMT-06:00 1998
Valid to:
Mon Aug 13 17:59:00 GMT-06:00 2018
Issue background
SSL helps to protect the confidentiality and integrity of information in transit between the browser and server, and to provide authentication of the server's identity. To serve this purpose, the server must present an SSL certificate which is valid for the server's hostname, is issued by a trusted authority and is valid for the current date. If any one of these requirements is not met, SSL connections to the server will not provide the full protection for which SSL is designed.
It should be noted that various attacks exist against SSL in general, and in the context of HTTPS web connections. It may be possible for a determined and suitably-positioned attacker to compromise SSL connections without user detection even when a valid SSL certificate is used.Report generated by XSS.CX at Mon Sep 05 13:10:12 GMT-06:00 2011.