Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application's immediate response in an unsafe way. An attacker can use the vulnerability to construct a request which, if issued by another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the context of that user's session with the application.
The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.
Users can be induced to issue the attacker's crafted request in various ways. For example, the attacker can send a victim a link containing a malicious URL in an email or instant message. They can submit the link to popular web sites that allow content authoring, for example in blog comments. And they can create an innocuous looking web site which causes anyone viewing it to make arbitrary cross-domain requests to the vulnerable application (using either the GET or the POST method).
The security impact of cross-site scripting vulnerabilities is dependent upon the nature of the vulnerable application, the kinds of data and functionality which it contains, and the other applications which belong to the same domain and organisation. If the application is used only to display non-sensitive public content, with no authentication or access control functionality, then a cross-site scripting flaw may be considered low risk. However, if the same application resides on a domain which can access cookies for other more security-critical applications, then the vulnerability could be used to attack those other applications, and so may be considered high risk. Similarly, if the organisation which owns the application is a likely target for phishing attacks, then the vulnerability could be leveraged to lend credibility to such attacks, by injecting Trojan functionality into the vulnerable application, and exploiting users' trust in the organisation in order to capture credentials for other applications which it owns. In many kinds of application, such as those providing online banking functionality, cross-site scripting should always be considered high risk.
Issue remediation
In most situations where user-controllable data is copied into application responses, cross-site scripting attacks can be prevented using two layers of defences:
Input should be validated as strictly as possible on arrival, given the kind of content which it is expected to contain. For example, personal names should consist of alphabetical and a small range of typographical characters, and be relatively short; a year of birth should consist of exactly four numerals; email addresses should match a well-defined regular expression. Input which fails the validation should be rejected, not sanitised.
User input should be HTML-encoded at any point where it is copied into application responses. All HTML metacharacters, including < > " ' and =, should be replaced with the corresponding HTML entities (< > etc).
In cases where the application's functionality allows users to author content using a restricted subset of HTML tags and attributes (for example, blog comments which allow limited formatting and linking), it is necessary to parse the supplied HTML to validate that it does not use any dangerous syntax; this is a non-trivial task.
The value of REST URL parameter 1 is copied into the HTML document as plain text between tags. The payload d1ea8<script>alert(1)</script>84fa0fb0a67c5879 was submitted in the REST URL parameter 1. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
The original request used the POST method, however it was possible to convert the request to use the GET method, to enable easier demonstration and delivery of the attack.
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang ...[SNIP]... <p>The requested URL /accountsd1ea8<script>alert(1)</script>84fa0fb0a67c5879/trial/ was not found on this server.</p> ...[SNIP]...
The value of REST URL parameter 2 is copied into the HTML document as plain text between tags. The payload 6cf87<script>alert(1)</script>3c02b3b0043b2761e was submitted in the REST URL parameter 2. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
The original request used the POST method, however it was possible to convert the request to use the GET method, to enable easier demonstration and delivery of the attack.
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang ...[SNIP]... <p>The requested URL /accounts/trial6cf87<script>alert(1)</script>3c02b3b0043b2761e/ was not found on this server.</p> ...[SNIP]...
The value of REST URL parameter 1 is copied into the HTML document as plain text between tags. The payload da756<script>alert(1)</script>30db08a5d2b was submitted in the REST URL parameter 1. This input was echoed unmodified in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang ...[SNIP]... <p>The requested URL /da756<script>alert(1)</script>30db08a5d2b/1/favicon.ico was not found on this server.</p> ...[SNIP]...
The cookies appear to contain session tokens, which may increase the risk associated with this issue. You should review the contents of the cookies to determine their function.
Issue background
If the secure flag is set on a cookie, then browsers will not submit the cookie in any requests that use an unencrypted HTTP connection, thereby preventing the cookie from being trivially intercepted by an attacker monitoring network traffic. If the secure flag is not set, then the cookie will be transmitted in clear-text if the user visits any HTTP URLs within the cookie's scope. An attacker may be able to induce this event by feeding a user suitable links, either directly or via another web site. Even if the domain which issued the cookie does not host any content that is accessed over HTTP, an attacker may be able to use links of the form http://example.com:443/ to perform the same attack.
Issue remediation
The secure flag should be set on all cookies that are used for transmitting sensitive data when accessing content over HTTPS. If cookies are used to transmit session tokens, then areas of the application that are accessed over HTTPS should employ their own session handling mechanism, and the session tokens used should never be transmitted over unencrypted communications.
The cookies appear to contain session tokens, which may increase the risk associated with this issue. You should review the contents of the cookies to determine their function.
Issue background
If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or set by client-side JavaScript. This measure can prevent certain client-side attacks, such as cross-site scripting, from trivially capturing the cookie's value via an injected script.
Issue remediation
There is usually no good reason not to set the HttpOnly flag on all cookies. Unless you specifically require legitimate client-side scripts within your application to read or set a cookie's value, you should set the HttpOnly flag by including this attribute within the relevant Set-cookie directive.
You should be aware that the restrictions imposed by the HttpOnly flag can potentially be circumvented in some circumstances, and that numerous other serious attacks can be delivered by client-side script injection, aside from simple cookie stealing.
When an application includes a script from an external domain, this script is executed by the browser within the security context of the invoking application. The script can therefore do anything that the application's own scripts can do, such as accessing application data and performing actions within the context of the current user.
If you include a script from an external domain, then you are trusting that domain with the data and functionality of your application, and you are trusting the domain's own security to prevent an attacker from modifying the script to perform malicious actions within your application.
Issue remediation
Scripts should not be included from untrusted domains. If you have a requirement which a third-party script appears to fulfil, then you should ideally copy the contents of that script onto your own domain and include it from there. If that is not possible (e.g. for licensing reasons) then you should consider reimplementing the script's functionality within your own code.
The following email address was disclosed in the response:
support@elastichosts.com
Issue background
The presence of email addresses within application responses does not necessarily constitute a security vulnerability. Email addresses may appear intentionally within contact information, and many applications (such as web mail) include arbitrary third-party email addresses within their core content.
However, email addresses of developers and other individuals (whether appearing on-screen or hidden within page source) may disclose information that is useful to an attacker; for example, they may represent usernames that can be used at the application's login, and they may be used in social engineering attacks against the organisation's personnel. Unnecessary or excessive disclosure of email addresses may also lead to an increase in the volume of spam email received.
Issue remediation
You should review the email addresses being disclosed by the application, and consider removing any that are unnecessary, or replacing personal addresses with anonymous mailbox addresses (such as helpdesk@example.com).
Unless directed otherwise, browsers may store a local cached copy of content received from web servers. Some browsers, including Internet Explorer, cache content accessed via HTTPS. If sensitive information in application responses is stored in the local cache, then this may be retrieved by other users who have access to the same computer at a future time.
Issue remediation
The application should return caching directives instructing browsers not to store local copies of any sensitive data. Often, this can be achieved by configuring the web server to prevent caching for relevant paths within the web root. Alternatively, most web development platforms allow you to control the server's caching directives from within individual scripts. Ideally, the web server should return the following HTTP headers in all responses containing sensitive content:
The server presented a valid, trusted SSL certificate. This issue is purely informational.
The server presented the following certificates:
Server certificate
Issued to:
*.elastichosts.com
Issued by:
GeoTrust SSL CA
Valid from:
Tue Oct 05 21:29:09 GMT-06:00 2010
Valid to:
Wed Dec 07 22:31:06 GMT-06:00 2011
Certificate chain #1
Issued to:
GeoTrust SSL CA
Issued by:
GeoTrust Global CA
Valid from:
Fri Feb 19 16:39:26 GMT-06:00 2010
Valid to:
Tue Feb 18 16:39:26 GMT-06:00 2020
Certificate chain #2
Issued to:
GeoTrust Global CA
Issued by:
GeoTrust Global CA
Valid from:
Mon May 20 22:00:00 GMT-06:00 2002
Valid to:
Fri May 20 22:00:00 GMT-06:00 2022
Issue background
SSL helps to protect the confidentiality and integrity of information in transit between the browser and server, and to provide authentication of the server's identity. To serve this purpose, the server must present an SSL certificate which is valid for the server's hostname, is issued by a trusted authority and is valid for the current date. If any one of these requirements is not met, SSL connections to the server will not provide the full protection for which SSL is designed.
It should be noted that various attacks exist against SSL in general, and in the context of HTTPS web connections. It may be possible for a determined and suitably-positioned attacker to compromise SSL connections without user detection even when a valid SSL certificate is used.Report generated by XSS.CX at Sat Sep 03 20:06:37 GMT-06:00 2011.