SQL injection vulnerabilities arise when user-controllable data is incorporated into database SQL queries in an unsafe manner. An attacker can supply crafted input to break out of the data context in which their input appears and interfere with the structure of the surrounding query.
Various attacks can be delivered via SQL injection, including reading or modifying critical application data, interfering with application logic, escalating privileges within the database and executing operating system commands.
Remediation background
The most effective way to prevent SQL injection attacks is to use parameterised queries (also known as prepared statements) for all database access. This method uses two steps to incorporate potentially tainted data into SQL queries: first, the application specifies the structure of the query, leaving placeholders for each item of user input; second, the application specifies the contents of each placeholder. Because the structure of the query has already defined in the first step, it is not possible for malformed data in the second step to interfere with the query structure. You should review the documentation for your database and application platform to determine the appropriate APIs which you can use to perform parameterised queries. It is strongly recommended that you parameterise every variable data item that is incorporated into database queries, even if it is not obviously tainted, to prevent oversights occurring and avoid vulnerabilities being introduced by changes elsewhere within the code base of the application.
You should be aware that some commonly employed and recommended mitigations for SQL injection vulnerabilities are not always effective:
One common defence is to double up any single quotation marks appearing within user input before incorporating that input into a SQL query. This defence is designed to prevent malformed data from terminating the string in which it is inserted. However, if the data being incorporated into queries is numeric, then the defence may fail, because numeric data may not be encapsulated within quotes, in which case only a space is required to break out of the data context and interfere with the query. Further, in second-order SQL injection attacks, data that has been safely escaped when initially inserted into the database is subsequently read from the database and then passed back to it again. Quotation marks that have been doubled up initially will return to their original form when the data is reused, allowing the defence to be bypassed.
Another often cited defence is to use stored procedures for database access. While stored procedures can provide security benefits, they are not guaranteed to prevent SQL injection attacks. The same kinds of vulnerabilities that arise within standard dynamic SQL queries can arise if any SQL is dynamically constructed within stored procedures. Further, even if the procedure is sound, SQL injection can arise if the procedure is invoked in an unsafe manner using user-controllable data.
The REST URL parameter 2 appears to be vulnerable to SQL injection attacks. A single quote was submitted in the REST URL parameter 2, and a database error message was returned. Two single quotes were then submitted and the error message disappeared. You should review the contents of the error message, and the application's handling of other input, to confirm whether a vulnerability is present.
The database appears to be MySQL.
Remediation detail
The application should handle errors gracefully and prevent SQL error messages from being returned in responses.
SELECT * from dc_stores WHERE domain = 'coupons'/alibris' LIMIT 1|1064: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '' LIMIT 1' at line 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Deals and Coupo ...[SNIP]...
The REST URL parameter 2 appears to be vulnerable to SQL injection attacks. A single quote was submitted in the REST URL parameter 2, and a database error message was returned. Two single quotes were then submitted and the error message disappeared. You should review the contents of the error message, and the application's handling of other input, to confirm whether a vulnerability is present.
The database appears to be MySQL.
Remediation detail
The application should handle errors gracefully and prevent SQL error messages from being returned in responses.
SELECT * from dc_stores WHERE domain = 'deal_pictures'/0' LIMIT 1|1064: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '' LIMIT 1' at line 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Deals and Coupo ...[SNIP]...
The REST URL parameter 3 appears to be vulnerable to SQL injection attacks. A single quote was submitted in the REST URL parameter 3, and a database error message was returned. Two single quotes were then submitted and the error message disappeared. You should review the contents of the error message, and the application's handling of other input, to confirm whether a vulnerability is present.
The database appears to be MySQL.
Remediation detail
The application should handle errors gracefully and prevent SQL error messages from being returned in responses.
SELECT * from dc_stores WHERE domain = 'deal_pictures/0'' LIMIT 1|1064: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ''deal_pictures/0'' LIMIT 1' at line 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Deals and Coupo ...[SNIP]...
2. Cross-site scripting (reflected)previousnext There are 3 instances of this issue:
Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application's immediate response in an unsafe way. An attacker can use the vulnerability to construct a request which, if issued by another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the context of that user's session with the application.
The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.
Users can be induced to issue the attacker's crafted request in various ways. For example, the attacker can send a victim a link containing a malicious URL in an email or instant message. They can submit the link to popular web sites that allow content authoring, for example in blog comments. And they can create an innocuous looking web site which causes anyone viewing it to make arbitrary cross-domain requests to the vulnerable application (using either the GET or the POST method).
The security impact of cross-site scripting vulnerabilities is dependent upon the nature of the vulnerable application, the kinds of data and functionality which it contains, and the other applications which belong to the same domain and organisation. If the application is used only to display non-sensitive public content, with no authentication or access control functionality, then a cross-site scripting flaw may be considered low risk. However, if the same application resides on a domain which can access cookies for other more security-critical applications, then the vulnerability could be used to attack those other applications, and so may be considered high risk. Similarly, if the organisation which owns the application is a likely target for phishing attacks, then the vulnerability could be leveraged to lend credibility to such attacks, by injecting Trojan functionality into the vulnerable application, and exploiting users' trust in the organisation in order to capture credentials for other applications which it owns. In many kinds of application, such as those providing online banking functionality, cross-site scripting should always be considered high risk.
Issue remediation
In most situations where user-controllable data is copied into application responses, cross-site scripting attacks can be prevented using two layers of defences:
Input should be validated as strictly as possible on arrival, given the kind of content which it is expected to contain. For example, personal names should consist of alphabetical and a small range of typographical characters, and be relatively short; a year of birth should consist of exactly four numerals; email addresses should match a well-defined regular expression. Input which fails the validation should be rejected, not sanitised.
User input should be HTML-encoded at any point where it is copied into application responses. All HTML metacharacters, including < > " ' and =, should be replaced with the corresponding HTML entities (< > etc).
In cases where the application's functionality allows users to author content using a restricted subset of HTML tags and attributes (for example, blog comments which allow limited formatting and linking), it is necessary to parse the supplied HTML to validate that it does not use any dangerous syntax; this is a non-trivial task.
The value of REST URL parameter 1 is copied into the value of an HTML tag attribute which is encapsulated in double quotation marks. The payload f0729"><script>alert(1)</script>26c256d2387 was submitted in the REST URL parameter 1. This input was echoed as f0729\"><script>alert(1)</script>26c256d2387 in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
The value of REST URL parameter 1 is copied into the value of an HTML tag attribute which is encapsulated in double quotation marks. The payload 7ed8c"><script>alert(1)</script>83aad05425b was submitted in the REST URL parameter 1. This input was echoed as 7ed8c\"><script>alert(1)</script>83aad05425b in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
The value of REST URL parameter 1 is copied into the value of an HTML tag attribute which is encapsulated in double quotation marks. The payload 9d9bb%2522%253e%253cscript%253ealert%25281%2529%253c%252fscript%253edafe5e2e257 was submitted in the REST URL parameter 1. This input was echoed as 9d9bb\"><script>alert(1)</script>dafe5e2e257 in the application's response.
This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.
The application attempts to block certain characters that are often used in XSS attacks but this can be circumvented by double URL-encoding the required characters - for example, by submitting %253c instead of the < character.
Remediation detail
There is probably no need to perform a second URL-decode of the value of REST URL parameter 1 as the web server will have already carried out one decode. In any case, the application should perform its input validation after any custom canonicalisation has been carried out.
XML or SOAP injection vulnerabilities arise when user input is inserted into a server-side XML document or SOAP message in an unsafe way. It may be possible to use XML metacharacters to modify the structure of the resulting XML. Depending on the function in which the XML is used, it may be possible to interfere with the application's logic, to perform unauthorised actions or access sensitive data.
This kind of vulnerability can be difficult to detect and exploit remotely; you should review the application's response, and the purpose which the relevant input performs within the application's functionality, to determine whether it is indeed vulnerable.
Issue remediation
The application should validate or sanitise user input before incorporating it into an XML document or SOAP message. It may be possible to block any input containing XML metacharacters such as < and >. Alternatively, these characters can be replaced with the corresponding entities: < and >.
The REST URL parameter 1 appears to be vulnerable to XML injection. The payload ]]>> was appended to the value of the REST URL parameter 1. The application's response indicated that this input may have caused an error within a server-side XML or SOAP parser, suggesting that the input has been inserted into an XML document or SOAP message without proper sanitisation.
The REST URL parameter 1 appears to be vulnerable to XML injection. The payload ]]>> was appended to the value of the REST URL parameter 1. The application's response indicated that this input may have caused an error within a server-side XML or SOAP parser, suggesting that the input has been inserted into an XML document or SOAP message without proper sanitisation.
The REST URL parameter 1 appears to be vulnerable to XML injection. The payload ]]>> was appended to the value of the REST URL parameter 1. The application's response indicated that this input may have caused an error within a server-side XML or SOAP parser, suggesting that the input has been inserted into an XML document or SOAP message without proper sanitisation.
When an application includes a script from an external domain, this script is executed by the browser within the security context of the invoking application. The script can therefore do anything that the application's own scripts can do, such as accessing application data and performing actions within the context of the current user.
If you include a script from an external domain, then you are trusting that domain with the data and functionality of your application, and you are trusting the domain's own security to prevent an attacker from modifying the script to perform malicious actions within your application.
Issue remediation
Scripts should not be included from untrusted domains. If you have a requirement which a third-party script appears to fulfil, then you should ideally copy the contents of that script onto your own domain and include it from there. If that is not possible (e.g. for licensing reasons) then you should consider reimplementing the script's functionality within your own code.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Coupons by Stor ...[SNIP]... <link rel="stylesheet" href="http://cdn.gtln.us/dcws/js/tipsy/tipsy.css" type="text/css" />
The following cookie was issued by the application and does not have the HttpOnly flag set:
s=658983a72da97a2230cbaa28182cf707; path=/
The cookie does not appear to contain a session token, which may reduce the risk associated with this issue. You should review the contents of the cookie to determine its function.
Issue background
If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read or set by client-side JavaScript. This measure can prevent certain client-side attacks, such as cross-site scripting, from trivially capturing the cookie's value via an injected script.
Issue remediation
There is usually no good reason not to set the HttpOnly flag on all cookies. Unless you specifically require legitimate client-side scripts within your application to read or set a cookie's value, you should set the HttpOnly flag by including this attribute within the relevant Set-cookie directive.
You should be aware that the restrictions imposed by the HttpOnly flag can potentially be circumvented in some circumstances, and that numerous other serious attacks can be delivered by client-side script injection, aside from simple cookie stealing.
Request
GET / HTTP/1.1 Host: hackerprevention.info User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.13) Gecko/20110504 Namoroka/3.6.13 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-us,en;q=0.5 Accept-Encoding: gzip,deflate Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive: 115 Proxy-Connection: keep-alive Referer: http://burp/show/37
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Deals and Coupo ...[SNIP]...
The TRACE method is designed for diagnostic purposes. If enabled, the web server will respond to requests which use the TRACE method by echoing in its response the exact request which was received.
Although this behaviour is apparently harmless in itself, it can sometimes be leveraged to support attacks against other application users. If an attacker can find a way of causing a user to make a TRACE request, and can retrieve the response to that request, then the attacker will be able to capture any sensitive data which is included in the request by the user's browser, for example session cookies or credentials for platform-level authentication. This may exacerbate the impact of other vulnerabilities, such as cross-site scripting.
Issue remediation
The TRACE method should be disabled on the web server.
The file robots.txt is used to give instructions to web robots, such as search engine crawlers, about locations within the web site which robots are allowed, or not allowed, to crawl and index.
The presence of the robots.txt does not in itself present any kind of security vulnerability. However, it is often used to identify restricted or private areas of a site's contents. The information in the file may therefore help an attacker to map out the site's contents, especially if some of the locations identified are not linked from elsewhere in the site. If the application relies on robots.txt to protect access to these areas, and does not enforce proper access control over them, then this presents a serious vulnerability.
Issue remediation
The robots.txt file is not itself a security threat, and its correct use can represent good practice for non-security reasons. You should not assume that all web robots will honour the file's instructions. Rather, assume that attackers will pay close attention to any locations identified in the file. Do not rely on robots.txt to provide any kind of protection over unauthorised access.
Request
GET /robots.txt HTTP/1.0 Host: hackerprevention.info