Report generated by XSS.CX at Sat Nov 13 20:05:07 CST 2010.


Cross Site Scripting Reports | Hoyt LLC Research

The DORK Report

Loading

1. Cross-site scripting (reflected)



1. Cross-site scripting (reflected)

Summary

Severity:   High
Confidence:   Certain
Host:   http://www.worldsite.ws
Path:   /legal/index.dhtml

Issue detail

The value of REST URL parameter 1 is copied into the HTML document as plain text between tags. The payload f7d39%253cscript%253ealert%25281%2529%253c%252fscript%253e3be6bb66477 was submitted in the REST URL parameter 1. This input was echoed as f7d39<script>alert(1)</script>3be6bb66477 in the application's response.

This proof-of-concept attack demonstrates that it is possible to inject arbitrary JavaScript into the application's response.

The application attempts to block certain characters that are often used in XSS attacks but this can be circumvented by double URL-encoding the required characters - for example, by submitting %253c instead of the < character.

Note that a redirection occurred between the attack request and the response containing the echoed input. It is necessary to follow this redirection for the attack to succeed. When the attack is carried out via a browser, the redirection will be followed automatically.

Remediation detail

There is probably no need to perform a second URL-decode of the value of REST URL parameter 1 as the web server will have already carried out one decode. In any case, the application should perform its input validation after any custom canonicalisation has been carried out.

Issue background

Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application's immediate response in an unsafe way. An attacker can use the vulnerability to construct a request which, if issued by another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the context of that user's session with the application.

The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.

Users can be induced to issue the attacker's crafted request in various ways. For example, the attacker can send a victim a link containing a malicious URL in an email or instant message. They can submit the link to popular web sites that allow content authoring, for example in blog comments. And they can create an innocuous looking web site which causes anyone viewing it to make arbitrary cross-domain requests to the vulnerable application (using either the GET or the POST method).

The security impact of cross-site scripting vulnerabilities is dependent upon the nature of the vulnerable application, the kinds of data and functionality which it contains, and the other applications which belong to the same domain and organisation. If the application is used only to display non-sensitive public content, with no authentication or access control functionality, then a cross-site scripting flaw may be considered low risk. However, if the same application resides on a domain which can access cookies for other more security-critical applications, then the vulnerability could be used to attack those other applications, and so may be considered high risk. Similarly, if the organisation which owns the application is a likely target for phishing attacks, then the vulnerability could be leveraged to lend credibility to such attacks, by injecting Trojan functionality into the vulnerable application, and exploiting users' trust in the organisation in order to capture credentials for other applications which it owns. In many kinds of application, such as those providing online banking functionality, cross-site scripting should always be considered high risk.

Remediation background

In most situations where user-controllable data is copied into application responses, cross-site scripting attacks can be prevented using two layers of defenses:In cases where the application's functionality allows users to author content using a restricted subset of HTML tags and attributes (for example, blog comments which allow limited formatting and linking), it is necessary to parse the supplied HTML to validate that it does not use any dangerous syntax; this is a non-trivial task.

Request

GET /legalf7d39%253cscript%253ealert%25281%2529%253c%252fscript%253e3be6bb66477/index.dhtml HTTP/1.1
Host: www.worldsite.ws
Accept: */*
Accept-Language: en
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)
Connection: close

Response (redirected)

HTTP/1.1 200 OK
Server: nginx/0.7.65
Date: Fri, 12 Nov 2010 00:39:00 GMT
Content-Type: text/html
Connection: close
Cache-Control: no-cache, must-revalidate
Expires: Mon, 26 Jul 1997 05:00:00 GMT
Pragma: no-cache
Content-Length: 4574

<html><head><title>The Internet Land Rush is On! | GDI, Inc.</title>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1251">
</head>

<body bgcolor="#ffffff" leftmargin="0" topmarg
...[SNIP]...
<td width="413" height="117" bgcolor="#f5f5f5" style="padding: 10px; font-family: tahoma; font-size: 13px; text-align: justify;" valign="top">
               ERROR: Invalid Sponsor Username (legalf7d39<script>alert(1)</script>3be6bb66477)<br>
...[SNIP]...

Report generated by XSS.CX at Sat Nov 13 20:05:07 CST 2010.